=(x^2+y^2+1)(x^2+y^2+1)

Simple and best practice solution for =(x^2+y^2+1)(x^2+y^2+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for =(x^2+y^2+1)(x^2+y^2+1) equation:


Simplifying
0 = (x2 + y2 + 1)(x2 + y2 + 1)

Reorder the terms:
0 = (1 + x2 + y2)(x2 + y2 + 1)

Reorder the terms:
0 = (1 + x2 + y2)(1 + x2 + y2)

Multiply (1 + x2 + y2) * (1 + x2 + y2)
0 = (1(1 + x2 + y2) + x2(1 + x2 + y2) + y2(1 + x2 + y2))
0 = ((1 * 1 + x2 * 1 + y2 * 1) + x2(1 + x2 + y2) + y2(1 + x2 + y2))
0 = ((1 + 1x2 + 1y2) + x2(1 + x2 + y2) + y2(1 + x2 + y2))
0 = (1 + 1x2 + 1y2 + (1 * x2 + x2 * x2 + y2 * x2) + y2(1 + x2 + y2))

Reorder the terms:
0 = (1 + 1x2 + 1y2 + (1x2 + x2y2 + x4) + y2(1 + x2 + y2))
0 = (1 + 1x2 + 1y2 + (1x2 + x2y2 + x4) + y2(1 + x2 + y2))
0 = (1 + 1x2 + 1y2 + 1x2 + x2y2 + x4 + (1 * y2 + x2 * y2 + y2 * y2))

Reorder the terms:
0 = (1 + 1x2 + 1y2 + 1x2 + x2y2 + x4 + (x2y2 + 1y2 + y4))
0 = (1 + 1x2 + 1y2 + 1x2 + x2y2 + x4 + (x2y2 + 1y2 + y4))

Reorder the terms:
0 = (1 + 1x2 + 1x2 + x2y2 + x2y2 + x4 + 1y2 + 1y2 + y4)

Combine like terms: 1x2 + 1x2 = 2x2
0 = (1 + 2x2 + x2y2 + x2y2 + x4 + 1y2 + 1y2 + y4)

Combine like terms: x2y2 + x2y2 = 2x2y2
0 = (1 + 2x2 + 2x2y2 + x4 + 1y2 + 1y2 + y4)

Combine like terms: 1y2 + 1y2 = 2y2
0 = (1 + 2x2 + 2x2y2 + x4 + 2y2 + y4)

Solving
0 = 1 + 2x2 + 2x2y2 + x4 + 2y2 + y4

Solving for variable 'x'.

Combine like terms: 0 + -1 = -1
-1 + -2x2 + -2x2y2 + -1x4 + -2y2 + -1y4 = 1 + 2x2 + 2x2y2 + x4 + 2y2 + y4 + -1 + -2x2 + -2x2y2 + -1x4 + -2y2 + -1y4

Reorder the terms:
-1 + -2x2 + -2x2y2 + -1x4 + -2y2 + -1y4 = 1 + -1 + 2x2 + -2x2 + 2x2y2 + -2x2y2 + x4 + -1x4 + 2y2 + -2y2 + y4 + -1y4

Combine like terms: 1 + -1 = 0
-1 + -2x2 + -2x2y2 + -1x4 + -2y2 + -1y4 = 0 + 2x2 + -2x2 + 2x2y2 + -2x2y2 + x4 + -1x4 + 2y2 + -2y2 + y4 + -1y4
-1 + -2x2 + -2x2y2 + -1x4 + -2y2 + -1y4 = 2x2 + -2x2 + 2x2y2 + -2x2y2 + x4 + -1x4 + 2y2 + -2y2 + y4 + -1y4

Combine like terms: 2x2 + -2x2 = 0
-1 + -2x2 + -2x2y2 + -1x4 + -2y2 + -1y4 = 0 + 2x2y2 + -2x2y2 + x4 + -1x4 + 2y2 + -2y2 + y4 + -1y4
-1 + -2x2 + -2x2y2 + -1x4 + -2y2 + -1y4 = 2x2y2 + -2x2y2 + x4 + -1x4 + 2y2 + -2y2 + y4 + -1y4

Combine like terms: 2x2y2 + -2x2y2 = 0
-1 + -2x2 + -2x2y2 + -1x4 + -2y2 + -1y4 = 0 + x4 + -1x4 + 2y2 + -2y2 + y4 + -1y4
-1 + -2x2 + -2x2y2 + -1x4 + -2y2 + -1y4 = x4 + -1x4 + 2y2 + -2y2 + y4 + -1y4

Combine like terms: x4 + -1x4 = 0
-1 + -2x2 + -2x2y2 + -1x4 + -2y2 + -1y4 = 0 + 2y2 + -2y2 + y4 + -1y4
-1 + -2x2 + -2x2y2 + -1x4 + -2y2 + -1y4 = 2y2 + -2y2 + y4 + -1y4

Combine like terms: 2y2 + -2y2 = 0
-1 + -2x2 + -2x2y2 + -1x4 + -2y2 + -1y4 = 0 + y4 + -1y4
-1 + -2x2 + -2x2y2 + -1x4 + -2y2 + -1y4 = y4 + -1y4

Combine like terms: y4 + -1y4 = 0
-1 + -2x2 + -2x2y2 + -1x4 + -2y2 + -1y4 = 0

Factor out the Greatest Common Factor (GCF), '-1'.
-1(1 + 2x2 + 2x2y2 + x4 + 2y2 + y4) = 0

Ignore the factor -1.

Subproblem 1

Set the factor '(1 + 2x2 + 2x2y2 + x4 + 2y2 + y4)' equal to zero and attempt to solve: Simplifying 1 + 2x2 + 2x2y2 + x4 + 2y2 + y4 = 0 Solving 1 + 2x2 + 2x2y2 + x4 + 2y2 + y4 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.

See similar equations:

| 2x^2+2y^2+2xy-10x-8y+14=0 | | =(4x-3y-1)(4x-3y-1) | | 2x^2-35x+2=0 | | =(3x^2-5y)(3x^2-5y)(3x^2-5y) | | =(2x^3y+z^2)(2x^3y+z^2)(2x^3y+z^2) | | 5x+3=(x-21) | | =(m^2n+8)(m^2n+8)(m^2n+8) | | =(m^2+8)(m^2+8)(m^2+8) | | =(5x-y)(2x-3) | | =(x+8y)(x-6y) | | 2(15-5)-(7-8)= | | 2(-31)= | | x^2-100x-50= | | x^2+22x-11= | | 3x+x-3=0 | | -42-(-11)= | | y=4x+80 | | 205-6x=39x+20 | | 81-18w+w^2= | | (3r-4)(4r-6)= | | x^2-18x-13=0 | | 53-5x=22x+23 | | -4(t-4)-(t+5)=10 | | 7t+6p=4t+8p | | 6p+7t=8p+4t | | 24-3n=30 | | 17/4= | | 3x+413= | | PR=x+y+z+w | | 20=30-z | | -3x=y | | 2x+23=10x+57 |

Equations solver categories